Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
J Neurooncol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598087

RESUMO

PURPOSE: Boron neutron capture therapy (BNCT) is a tumor cell-selective particle-radiation therapy. In BNCT, administered p-boronophenylalanine (BPA) is selectively taken up by tumor cells, and the tumor is irradiated with thermal neutrons. High-LET α-particles and recoil 7Li, which have a path length of 5-9 µm, are generated by the capture reaction between 10B and thermal neutrons and selectively kill tumor cells that have uptaken 10B. Although BNCT has prolonged the survival time of malignant glioma patients, recurrences are still to be resolved. miRNAs, that are encapsulated in small extracellular vesicles (sEVs) in body fluids and exist stably may serve critical role in recurrence. In this study, we comprehensively investigated microRNAs (miRNAs) in sEVs released from post-BNCT glioblastoma cells. METHOD: Glioblastoma U87 MG cells were treated with 25 ppm of BPA in the culture media and irradiated with thermal neutrons. After irradiation, they were plated into dishes and cultured for 3 days in the 5% CO2 incubator. Then, sEVs released into the medium were collected by column chromatography, and miRNAs in sEVs were comprehensively investigated using microarrays. RESULT: An increase in 20 individual miRNAs (ratio > 2) and a decrease in 2 individual miRNAs (ratio < 0.5) were detected in BNCT cells compared with non-irradiated cells. Among detected miRNAs, 20 miRNAs were associated with worse prognosis of glioma in Kaplan Meier Survival Analysis of overall survival in TCGA. CONCLUSION: These miRNA after BNCT may proceed tumors, modulate radiation resistance, or inhibit invasion and affect the prognosis of glioma.

2.
Sci Rep ; 14(1): 8265, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594281

RESUMO

Boron neutron capture therapy (BNCT) is a type of targeted particle radiation therapy with potential applications at the cellular level. Spinal cord gliomas (SCGs) present a substantial challenge owing to their poor prognosis and the lack of effective postoperative treatments. This study evaluated the efficacy of BNCT in a rat SCGs model employing the Basso, Beattie, and Bresnahan (BBB) scale to assess postoperative locomotor activity. We confirmed the presence of adequate in vitro boron concentrations in F98 rat glioma and 9L rat gliosarcoma cells exposed to boronophenylalanine (BPA) and in vivo tumor boron concentration 2.5 h after intravenous BPA administration. In vivo neutron irradiation significantly enhanced survival in the BNCT group when compared with that in the untreated group, with a minimal BBB scale reduction in all sham-operated groups. These findings highlight the potential of BNCT as a promising treatment option for SCGs.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioma , Neoplasias da Medula Espinal , Ratos , Animais , Neoplasias Encefálicas/patologia , Ratos Endogâmicos F344 , Boro , Pesquisa Translacional Biomédica , Compostos de Boro/farmacologia , Glioma/patologia
3.
Med Phys ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38205862

RESUMO

BACKGROUND: In Japan, the clinical treatment of boron neutron capture therapy (BNCT) has been applied to unresectable, locally advanced, and recurrent head and neck carcinomas using an accelerator-based neutron source since June of 2020. Considering the increase in the number of patients receiving BNCT, efficiency of the treatment planning procedure is becoming increasingly important. Therefore, novel and rapid dose calculation algorithms must be developed. We developed a novel algorithm for calculating neutron flux, which comprises of a combination of a Monte Carlo (MC) method and a method based on the removal-diffusion (RD) theory (RD calculation method) for the purpose of dose calculation of BNCT. PURPOSE: We present the details of our novel algorithm and the verification results of the calculation accuracy based on the MC calculation result. METHODS: In this study, the "MC-RD" calculation method was developed, wherein the RD calculation method was used to calculate the thermalization process of neutrons and the MC method was used to calculate the moderation process. The RD parameters were determined by MC calculations in advance. The MC-RD calculation accuracy was verified by comparing the results of the MC-RD and MC calculations with respect to the neutron flux distributions in each of the cubic and head phantoms filled with water. RESULTS: Comparing the MC-RD calculation results with those of MC calculations, it was found that the MC-RD calculation accurately reproduced the thermal neutron flux distribution inside the phantom, with the exception of the region near the surface of the phantom. CONCLUSIONS: The MC-RD calculation method is useful for the evaluation of the neutron flux distribution for the purpose of BNCT dose calculation, except for the region near the surface.

4.
Adv Sci (Weinh) ; 11(7): e2304171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030413

RESUMO

Nano-sized contrast agents (NCAs) hold potential for highly specific tumor contrast enhancement during magnetic resonance imaging. Given the quantity of contrast agents loaded into a single nano-carrier and the anticipated relaxation effects, the current molecular design approaches its limits. In this study, a novel molecular mechanism to augment the relaxation of NCAs is introduced and demonstrated. NCA formation is driven by the intramolecular self-folding of a single polymer chain that possesses systematically arranged hydrophilic and hydrophobic segments in water. Utilizing this self-folding molecular design, the relaxivity value can be elevated with minimal loading of gadolinium complexes, enabling sharp tumor imaging. Furthermore, the study reveals that this NCA can selectively accumulate into tumor tissues, offering effective anti-tumor results through gadolinium neutron capture therapy. The efficacy and versatility of this self-folding molecular design underscore its promise for cancer diagnosis and treatment.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Meios de Contraste/química , Gadolínio/química , Substâncias Macromoleculares , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
5.
Mol Pharm ; 20(12): 6311-6318, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37909734

RESUMO

Noninvasive monitoring of boron agent biodistribution is required in advance of neutron capture therapy. In this study, we developed a gadolinium-boron-conjugated albumin (Gd-MID-BSA) for MRI-guided neutron capture therapy. Gd-MID-BSA was prepared by labeling bovine serum albumin with a maleimide-functionalized gadolinium complex and a maleimide-functionalized closo-dodecaborate orthogonally. The accumulation of Gd-MID-BSA in tumors in CT26 tumor-bearing mice reached a maximum at 24 h after the injection, as confirmed by T1-based MRI and biodistribution analysis using inductively coupled plasma optical emission spectrometry. The concentrations of boron and gadolinium in the tumors exceeded the thresholds required for boron neutron capture therapy (BNCT) and gadolinium neutron capture therapy (GdNCT), respectively. The boron concentration ratios of tumor to blood and tumor to normal tissues satisfied the clinical criteria, indicating the reduction of undesired nuclear reactions of endogenous nuclei. The molar ratio of boron to gadolinium in the tumor was close to that of Gd-MID-BSA, demonstrating that the accumulation of Gd-MID-BSA in the tumor can be evaluated by MRI. Thermal neutron irradiation with Gd-MID-BSA resulted in significant suppression of tumor growth compared to the group injected with a boron-conjugated albumin without gadolinium (MID-BSA). The neutron irradiation with Gd-MID-BSA did not cause apparent side effects. These results demonstrate that the conjugation of gadolinium and boron within the albumin molecule offers a novel strategy for enhancing the therapeutic effect of BNCT and the potential of MRI-guided neutron capture therapy as a promising treatment for malignant tumors.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Terapia por Captura de Nêutron , Camundongos , Animais , Boro , Gadolínio , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Terapia por Captura de Nêutron/métodos , Imageamento por Ressonância Magnética/métodos , Terapia por Captura de Nêutron de Boro/métodos , Maleimidas
6.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37792507

RESUMO

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Humanos , Lipossomos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Compostos de Boro , Frutose
7.
Chemistry; 29(63): e202302073, 2023
em Inglês | MEDLINE | ID: mdl-937589488

RESUMO

Boron neutron capture therapy (BNCT), advanced cancer treatment utilizing nuclear fission of 10 B atom in cancer cells, is attracting increasing attention. As 10 B delivery agent, sodium borocaptate (10 BSH, 10 B12 H11 SH ⋅ 2Na), has been used in clinical studies along with L-boronophenylalanine. Recently, this boron cluster has been conjugated with lipids, polymers or nanoparticles to increase selectivity to and retentivity in tumor. In this work, anticancer nanoformulations for BNCT are designed, consisting of poly(glycerol) functionalized detonation nanodiamonds (DND-PG) as a hydrophilic nanocarrier, the boron cluster moiety (10 B12 H11 2- ) as a dense boron-10 source, and phenylboronic acid or RGD peptide as an active targeting moiety. Some hydroxy groups in PG were oxidized to carboxy groups (DND-PG-COOH) to conjugate the active targeting moiety. Some hydroxy groups in DND-PG-COOH were then transformed to azide to conjugate 10 B12 H11 2- through click chemistry. The nanodrugs were evaluated in vitro using B16 murine melanoma cells in terms of cell viability, BNCT efficacy and cellular uptake. As a result, the 10 B12 H11 2- moiety is found to facilitate cellular uptake probably due to its negative charge. Upon thermal neutron irradiation, the nanodrugs with 10 B12 H11 2- moiety exhibited good anticancer efficacies with slight differences with and without targeting moiety.


Assuntos
Nanodiamantes , Terapia por Captura de Nêutron de Boro , Neoplasias , Camundongos , Animais , Boro , Glicerol , Compostos de Boro
8.
Biology (Basel) ; 12(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759639

RESUMO

High-grade gliomas present a significant challenge in neuro-oncology because of their aggressive nature and resistance to current therapies. Boron neutron capture therapy (BNCT) is a potential treatment method; however, the boron used by the carrier compounds-such as 4-borono-L-phenylalanine (L-BPA)-have limitations. This study evaluated the use of boron-conjugated 4-iodophenylbutanamide (BC-IP), a novel boron compound in BNCT, for the treatment of glioma. Using in vitro drug exposure experiments and in vivo studies, we compared BC-IP and BPA, with a focus on boron uptake and retention characteristics. The results showed that although BC-IP had a lower boron uptake than BPA, it exhibited superior retention. Furthermore, despite lower boron accumulation in tumors, BNCT mediated by BC-IP showed significant survival improvement in glioma-bearing rats compared to controls (not treated animals and neutrons only). These results suggest that BC-IP, with its unique properties, may be an alternative boron carrier for BNCT. Further research is required to optimize this potential treatment modality, which could significantly contribute to advancing the treatment of high-grade gliomas.

9.
J Radiat Res ; 64(6): 859-869, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37717596

RESUMO

Recently, boron neutron capture therapy (BNCT) has been attracting attention as a minimally invasive cancer treatment. In 2020, the accelerator-based BNCT with L-BPA (Borofalan) as its D-sorbitol complex (Steboronine®) for head and neck cancers was approved by Pharmaceutical and Medical Devices Agency for the first time in the world. As accelerator-based neutron generation techniques are being developed in various countries, the development of novel tumor-selective boron agents is becoming increasingly important and desired. The Japanese Society of Neutron Capture Therapy believes it is necessary to propose standard evaluation protocols at each stage in the development of boron agents for BNCT. This review summarizes recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for BNCT based on our experience with L-BPA approval.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Humanos , Boro , Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons , Literatura de Revisão como Assunto
11.
Chemistry ; 29(63): e202302073, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37589488

RESUMO

Boron neutron capture therapy (BNCT), advanced cancer treatment utilizing nuclear fission of 10 B atom in cancer cells, is attracting increasing attention. As 10 B delivery agent, sodium borocaptate (10 BSH, 10 B12 H11 SH ⋅ 2Na), has been used in clinical studies along with L-boronophenylalanine. Recently, this boron cluster has been conjugated with lipids, polymers or nanoparticles to increase selectivity to and retentivity in tumor. In this work, anticancer nanoformulations for BNCT are designed, consisting of poly(glycerol) functionalized detonation nanodiamonds (DND-PG) as a hydrophilic nanocarrier, the boron cluster moiety (10 B12 H11 2- ) as a dense boron-10 source, and phenylboronic acid or RGD peptide as an active targeting moiety. Some hydroxy groups in PG were oxidized to carboxy groups (DND-PG-COOH) to conjugate the active targeting moiety. Some hydroxy groups in DND-PG-COOH were then transformed to azide to conjugate 10 B12 H11 2- through click chemistry. The nanodrugs were evaluated in vitro using B16 murine melanoma cells in terms of cell viability, BNCT efficacy and cellular uptake. As a result, the 10 B12 H11 2- moiety is found to facilitate cellular uptake probably due to its negative charge. Upon thermal neutron irradiation, the nanodrugs with 10 B12 H11 2- moiety exhibited good anticancer efficacies with slight differences with and without targeting moiety.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanodiamantes , Neoplasias , Camundongos , Animais , Boro , Glicerol , Compostos de Boro
12.
J Radiat Res ; 64(5): 811-815, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607589

RESUMO

A neutron beam for boron neutron capture therapy (BNCT) of deep-seated tumours is designed to maintain a high flux of epithermal neutrons, while keeping the thermal and fast neutron component as low as possible. These neutrons (thermal and fast) have a high relative biological effectiveness in comparison with high energy photon beams used for conventional X-ray radiotherapy. In the past, neutrons for the purpose of BNCT were generated using nuclear reactors. However, there are various challenges that arise when installing a reactor in a hospital environment. From 2006, the Kyoto University Research Reactor Institute, in collaboration with Sumitomo Heavy Industries, began the development of an accelerator-based neutron source for clinical BNCT in a bid to overcome the shortcomings of a nuclear reactor-based neutron source. Following installation and beam performance testing, in vitro studies were performed to assess the biological effect of the neutron beam. Four different cell lines were prepared and irradiated using the accelerator-based neutron source. Following neutron and gamma ray irradiation, the survival curve for each cell line was calculated. The biological end point to determine the relative biological effectiveness (RBE) was set to 10% cell survival, and the D10 for each cell line was determined. The RBE of the accelerator-based neutron beam was evaluated to be 2.62.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Eficiência Biológica Relativa , Ciclotrons , Nêutrons
13.
J Radiat Res ; 64(5): 795-803, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37517393

RESUMO

Boron neutron capture therapy (BNCT) with p-boronophenylalanine (BPA) is expected to have less effect on the decrease in normal bone strength than X-ray therapy. However, the compound biological effectiveness (CBE) value necessary to convert the boron neutron capture reaction (BNCR) dose into a bioequivalent X-ray dose has not been determined yet. The purpose of this study was to evaluate the influence of BNCT on normal bone in mice and to elucidate the CBE factor. We first searched the distribution of BPA in the normal bone of C3H/He mice and then measured the changes in bone strength after irradiation. The CBE value was determined when the decrease in bone strength was set as an index of the BNCT effect. The 10B concentrations in the tibia after subcutaneous injection of 125, 250 and 500 mg/kg BPA were measured by prompt gamma-ray spectroscopy and inductively coupled plasma (ICP)-atomic emission spectrometry. The 10B mapping in the tibia was examined by alpha-track autoradiography and laser ablation-ICP-mass spectrometry. The 10B concentration increased dose-dependently; moreover, the concentrations were maintained until 120 min after BPA administration. The administered 10B in the tibia was abundantly accumulated in the growth cartilage, trabecular bone and bone marrow. The bone strength was analyzed by a three-point bending test 12 weeks after irradiation. The bending strength of the tibia decreased dose-dependently after the irradiation of X-ray, neutron and BNCR. The CBE factor was obtained as 2.27 by comparing these dose-effect curves; the value determined in this study will enable an accurate dosimetry of normal bone.


Assuntos
Terapia por Captura de Nêutron de Boro , Camundongos , Animais , Terapia por Captura de Nêutron de Boro/métodos , Camundongos Endogâmicos C3H , Radiometria , Raios X , Compostos de Boro/uso terapêutico
14.
Cells ; 12(12)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371031

RESUMO

Boron neutron capture therapy (BNCT) is a selective radiotherapy based on nuclear reaction that occurs when 10B atoms accumulated in cancer cells are irradiated by thermal neutrons, triggering a nuclear fission response leading to cell death. Despite its growing importance in cancer treatment, molecular characterization of its effects is still lacking. In this context, proteomics investigation can be useful to study BNCT effect and identify potential biomarkers. Hence, we performed proteomic analysis with nanoLC-MS/MS (liquid chromatography coupled to tandem mass spectrometry) on extracellular vesicles (EVs) isolated from SAS cultures treated or not with 10B-boronophenylalanine (BPA) and different doses of neutron irradiation, to study the cellular response related to both boron administration and neutrons action. Despite the interference of fetal bovine serum in the medium, we were able to stratify BPA- and BPA+ conditions and to identify EVs-derived proteins characterizing pathways potentially related to a BNCT effect such as apoptosis, DNA repair and inflammatory response. In particular, KLF11, SERPINA1 and SERPINF2 were up-regulated in BPA+, while POLE and SERPINC1 were up-regulated in BPA-. These results provide the first proteomic investigation of EVs treated with BNCT in different conditions and highlight the potentiality of proteomics for improving biomarkers identification and mechanisms understanding of BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Vesículas Extracelulares , Compostos de Boro/uso terapêutico , Proteômica , Espectrometria de Massas em Tandem , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons
15.
J Control Release ; 360: 249-259, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356755

RESUMO

Boron neutron capture therapy (BNCT) has been applied for clinical trials on glioblastoma patients since 1950s, however, the low survival rate under the treatments has hampered the widespread use of BNCT. In this study, we developed a novel boron agent, PBC-IP, which consists of three functional groups: FRα-targeting, 10B resource (twelve 10B atoms in the molecule), and albumin-binding moieties. PBC-IP was selectively taken up by glioma cell lines such as C6, F98, and U87MG cells and accumulated 10- to 20-fold higher than L-4­boronophenylalanine (BPA). PBC-IP administrated intravenously to the human glioblastoma (U87MG) xenograft model showed higher boron accumulation in tumors (29.8 µg [10B]/g at 6 h) than BPA (9.6 µg [10B]/g at 3 h) at a 25 mg [10B]/kg dose, effectively suppressing tumor growth after thermal neutron irradiation. PBC-IP administrated via convection-enhanced delivery (CED) accumulated in the F98 glioma orthotopic rat model, achieving 26.5 µg [10B]/g in tumors with tumor/normal (T/N) brain and tumor/blood (T/B) boron ratios of 37.8 and 94.6, respectively, 3 h after CED. Survival at 180 days after BNCT was 50% in the PBC-IP group and 70% in the combined BPA and PBC-IP groups, with no residual brain tumors.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Ratos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Ácido Butírico/uso terapêutico , Ratos Endogâmicos F344 , Boro/uso terapêutico , Glioma/tratamento farmacológico , Glioma/radioterapia , Glioma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Compostos de Boro/química
16.
Sci Rep ; 13(1): 10173, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349515

RESUMO

Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA. Using human and mouse GSC lines, pre-incubation with ALA increased the intracellular accumulation of BPA dose-dependent. We also conducted in vivo experiments by intracerebrally implanting HGG13 cells in mice and administering ALA orally 24 h before BPA administration (ALA + BPA-BNCT). The ALA preloading group increased the tumor boron concentration and improved the tumor/blood boron concentration ratio, resulting in improved survival compared to the BPA-BNCT group. Furthermore, we found that the expression of amino acid transporters was upregulated following ALA treatment both in vitro and in vivo, particularly for ATB0,+. This suggests that ALA may sensitize GSCs to BNCT by upregulating the expression of amino acid transporters, thereby enhancing the uptake of BPA and improving the effectiveness of BNCT. These findings have important implications for strategies to improve the sensitivity of malignant gliomas to BPA-BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioma , Humanos , Animais , Camundongos , Ácido Aminolevulínico/farmacologia , Boro , Glioma/radioterapia , Células-Tronco Neoplásicas , Compostos de Boro , Neoplasias Encefálicas/radioterapia
17.
J Radiat Res ; 64(4): 661-667, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37295954

RESUMO

This study aimed to quantify the relative biological effectiveness (RBE) for epithermal neutron beam contaminated with fast neutrons in the accelerator-based boron neutron capture therapy (BNCT) system coupled to a solid-state lithium target. The experiments were performed in National Cancer Center Hospital (NCCH), Tokyo, Japan. Neutron irradiation with the system provided by Cancer Intelligence Care Systems (CICS), Inc. was performed. X-ray irradiation, which was assigned as the reference group, was also performed using a medical linear accelerator (LINAC) equipped in NCCH. The four cell lines (SAS, SCCVII, U87-MG and NB1RGB) were utilized to quantify RBE value for the neutron beam. Before both of those irradiations, all cells were collected and dispensed into vials. The doses of 10% cell surviving fraction (SF) (D10) were calculated by LQ model fitting. All cell experiments were conducted in triplicate at least. Because the system provides not only neutrons, but gamma-rays, the contribution from the gamma-rays to the survival fraction were subtracted in this study. D10 value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was 4.26, 4.08, 5.81 and 2.72 Gy, respectively, while that acquired by the X-ray irradiation was 6.34, 7.21, 7.12 and 5.49 Gy, respectively. Comparison of both of the D10 values, RBE value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was calculated as 1.7, 2.2, 1.3 and 2.5, respectively, and the average RBE value was 1.9. This study investigated RBE of the epithermal neutron beam contaminated with fast neutrons in the accelerator-based BNCT system coupled to a solid-state lithium target.


Assuntos
Terapia por Captura de Nêutron de Boro , Nêutrons Rápidos , Lítio , Nêutrons , Aceleradores de Partículas , Eficiência Biológica Relativa
18.
Nanoscale Adv ; 5(9): 2537-2546, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143818

RESUMO

Boron neutron capture therapy (BNCT), a method based on the fission of boron-10 upon neutron irradiation, has emerged as an attractive option for radiation therapy. To date, the main drugs used in BNCT are 4-boronophenylalanine (BPA) and sodium borocaptate (BSH). While BPA has been extensively tested in clinical trials, the use of BSH has been limited, mainly due to its poor cellular uptake. Here, we describe a novel type of mesoporous silica-based nanoparticle containing BSH covalently attached to a nanocarrier. Synthesis and characterization of these nanoparticles (BSH-BPMO) are presented. The synthetic strategy involves a click thiol-ene reaction with the boron cluster, providing hydrolytically stable linkage with the BSH in four steps. The BSH-BPMO nanoparticles were efficiently taken up into cancer cells and accumulated in the perinuclear region. Inductively coupled plasma (ICP) measurements of boron uptake in cells highlight the important role of the nanocarrier in the enhancement of boron internalization. BSH-BPMO nanoparticles were also taken up and distributed throughout tumour spheroids. BNCT efficacy was examined by the neutron exposure of the tumour spheroids. BSH-BPMO loaded spheroids were completely destroyed upon neutron irradiation. In contrast, neutron irradiation of tumour spheroids loaded with BSH or BPA resulted in significantly less spheroid shrinkage. The significant difference in BNCT efficacy of the BSH-BPMO was correlated with the improved boron uptake via the nanocarrier. Overall, these results demonstrate the critical role of the nanocarrier in BSH internalization and the enhanced BNCT efficacy of the BSH-BPMO compared with BSH and BPA, two drugs used in BNCT clinical trials.

19.
Radiat Res ; 200(1): 21-31, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212749

RESUMO

This study conducted fundamental research to develop a more effective BNCT targeting cancer stem cells. We constructed plasmids that induced the overexpression of L-type amino acid transporter 1 (LAT1) tagged with tdTomato on the cytoplasmic membranes of CD133 expressing cancer cells. After transfection of the plasmids into a glioblastoma cell line (T98G), several clones overexpressing LAT1-tdTomato in the hypoxic microenvironment of the spheroids formed from each clone were obtained. Confocal laser microscopic observation confirmed that signals from LAT1-tdTomato overlapped with immunofluorescence signals from the second antibody binding to CD133 in the hypoxic microenvironment of the spheroids. As CD133-positive cells in the hypoxic microenvironment of T98G spheroids have cancer stem cell characteristics, LAT1 seems to be selectively overexpressed in cancer stem cell-like cells. An RI tracer method showed that cells overexpressing LAT1-tdTomato in the hypoxic microenvironment of spheroids incorporate 14C-BPA much more than cells that do not overexpress LAT1-tdTomato. Neutron radiation experiments showed a more significant regression in spheroids formed with clones than in spheroids formed with parental cells when spheroids were treated with 10BPA. These results suggest that BNCT combined with gene therapy targeting cancer stem cells is more effective in glioblastoma therapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Glioblastoma , Humanos , Glioblastoma/radioterapia , Linhagem Celular Tumoral , Terapia por Captura de Nêutron de Boro/métodos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
20.
Eur J Drug Metab Pharmacokinet ; 48(4): 443-453, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37198368

RESUMO

BACKGROUND AND OBJECTIVE: Boron neutron capture therapy (BNCT) is a binary cancer treatment that combines boron administration and neutron irradiation. The tumor cells take up the boron compound and the subsequent neutron irradiation results in a nuclear fission reaction caused by the neutron capture reaction of the boron nuclei. This produces highly cytocidal heavy particles, leading to the destruction of tumor cells. p-boronophenylalanine (BPA) is widely used in BNCT but is insoluble in water and requires reducing sugar or sugar alcohol as a dissolvent to create an aqueous solution for administration. The purpose of this study was to investigate the pharmacokinetics of 14C-radiolabeled BPA using sorbitol as a dissolvent, which has not been reported before, and confirm whether neutron irradiation with a sorbitol solution of BPA can produce an antitumor effect of BNCT. MATERIALS AND METHODS: In this study, we evaluated the sugar alcohol, sorbitol, as a novel dissolution aid and examined the consequent stability of the BPA for long-term storage. U-87 MG and SAS tumor cell lines were used for in vitro and in vivo experiments. We examined the pharmacokinetics of 14C-radiolabeled BPA in sorbitol solution, administered either intravenously or subcutaneously to a mouse tumor model. Neutron irradiation was performed in conjunction with the administration of BPA in sorbitol solution using the same tumor cell lines both in vitro and in vivo. RESULTS: We found that BPA in sorbitol solution maintains stability for longer than in fructose solution, and can therefore be stored for a longer period. Pharmacokinetic studies with 14C-radiolabeled BPA confirmed that the sorbitol solution of BPA distributed through tumors in much the same way as BPA in fructose. Neutron irradiation was found to produce dose-dependent antitumor effects, both in vitro and in vivo, after the administration of BPA in sorbitol solution. CONCLUSION: In this report, we demonstrate the efficacy of BPA in sorbitol solution as the boron source in BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Camundongos , Animais , Terapia por Captura de Nêutron de Boro/métodos , Sorbitol , Boro , Resultado do Tratamento , Frutose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...